Investigating the value of fusion energy using the Global Change Assessment Model
D. Turnbull,
A. Glaser and
R.J. Goldston
Energy Economics, 2015, vol. 51, issue C, 346-353
Abstract:
The availability of fusion energy could prove valuable in meeting carbon mitigation targets over the course of the century. We use recent cost estimates for future fusion power plants in order to incorporate fusion into the Global Change Assessment Model (GCAM), a long-term energy and environment model used to study the interaction between technology, climate, and public policy. Results show that fusion's growth will depend on: the chosen carbon mitigation target (if any); the availability of competing carbon-neutral options for the provision of baseload electrical power, in particular nuclear fission as well as carbon capture and storage; the chosen discount rate; the initial year of availability; and the assumed costs of fusion electricity. We quantify the present value of the fusion option while varying the assumptions about these other parameters, and we find that it is, in general for our range of assumptions, significantly larger than the estimated cost of a comprehensive R&D plan to develop fusion energy. The results emphasize the wisdom in hedging against uncertainty in future technology availability by pursuing the development of multiple options that could feasibly play a major role in the latter half of the century.
Keywords: Integrated assessment modeling; Carbon mitigation; Technological change; Fusion energy; Climate change (search for similar items in EconPapers)
JEL-codes: H23 O30 Q42 Q47 Q54 Q55 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988315002224
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:51:y:2015:i:c:p:346-353
DOI: 10.1016/j.eneco.2015.08.001
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().