Index decomposition analysis with multidimensional and multilevel energy data
B.W. Ang () and
H. Wang
Energy Economics, 2015, vol. 51, issue C, 67-76
Abstract:
Index decomposition analysis (IDA) is a popular tool for analyzing changes in energy consumption over time. Traditionally, a typical IDA study uses a single dimensional energy dataset, such as industrial energy consumption by industrial sector or transportation energy consumption by transport mode. More recently, there have been a growing number of studies using more sophisticated datasets, e.g. energy consumption by geographical region and by economic sector in a single dataset. For IDA studies using energy data with multiple attributes, intermediate decomposition results can be generated using subsets of the entire dataset, and these results provide further insight into the energy system and problem studied. To ensure that these intermediate results are consistent and meaningful, the IDA method used should ideally satisfy two properties: perfect in decomposition at the subcategory level and consistency in aggregation. It is shown that the logarithmic mean Divisia index method I (LMDI-I) satisfies these two properties in both additive and multiplicative decomposition analysis. It is therefore the recommended IDA method when dealing with energy data with multiple attributes.
Keywords: Index decomposition analysis; LMDI; Multidimensional data (search for similar items in EconPapers)
JEL-codes: C43 Q43 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (50)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988315001772
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:51:y:2015:i:c:p:67-76
DOI: 10.1016/j.eneco.2015.06.004
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().