Strategic real option and flexibility analysis for nuclear power plants considering uncertainty in electricity demand and public acceptance
Michel-Alexandre Cardin,
Sizhe Zhang and
William Nuttall
Energy Economics, 2017, vol. 64, issue C, 226-237
Abstract:
Nuclear power is an important energy source especially in consideration of CO2 emissions and global warming. Deploying nuclear power plants, however, may be challenging when uncertainty in long-term electricity demand and more importantly public acceptance are considered. This is true especially for emerging economies (e.g., India, China) concerned with reducing their carbon footprint in the context of growing economic development, while accommodating a growing population and significantly changing demographics, as well as recent events that may affect the public's perception of nuclear technology. In the aftermath of the Fukushima Daiichi disaster, public acceptance has come to play a central role in continued operations and deployment of new nuclear power systems worldwide. In countries seeing important long-term demographic changes, it may be difficult to determine the future capacity needed, when and where to deploy it over time, and in the most economic manner. Existing studies on capacity deployment typically do not consider such uncertainty drivers in long-term capacity deployment analyses (e.g., +40years). To address these issues, this paper introduces a novel approach to nuclear power systems design and capacity deployment under uncertainty that exploits the idea of strategic flexibility and managerial decision rules. The approach enables dealing more pro-actively with uncertainty and helps identify the most economic deployment paths for new nuclear capacity deployment over multiple sites. One novelty of the study lies in the explicit recognition of public acceptance as an important uncertainty driver affecting economic performance, along with long-term electricity demand. Another novelty is in how the concept of flexibility is exploited to deal with uncertainty and improve expected lifecycle performance (e.g. cost). New design and deployment strategies are developed and analyzed through a multistage stochastic programming framework where decision rules are represented as non-anticipative constraints. This approach provides a new way to devise and analyze adaptation strategies in view of long-term uncertainty fluctuations that is more intuitive and readily usable by system operators than typical solutions obtained from standard real options analysis techniques, which are typically used to analyze flexibility in large-scale, irreversible investment projects. The study considers three flexibility strategies subject to uncertainty in electricity demand and public acceptance: 1) phasing (or staging) capacity deployment over time and space, 2) on-site capacity expansion, and 3) life extension. Numerical analysis shows that flexible designs perform better than rigid optimal design deployment strategies, and the most flexible design combining the above strategies outperforms both more rigid and less flexible design alternatives. It is also demonstrated that a flexible design benefits from the strategies of phasing and capacity expansion most significantly across all three strategies studied. The results provide useful insights for policy and decision-making in countries that are considering new nuclear facility deployment, in light of ongoing challenges surrounding new nuclear builds worldwide.
Keywords: Nuclear power plant; Flexibility in engineering design; Real options analysis; Decision rules; Public acceptance; Stochastic programming (search for similar items in EconPapers)
JEL-codes: C02 C6 C60 C61 C63 C65 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988317300890
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:64:y:2017:i:c:p:226-237
DOI: 10.1016/j.eneco.2017.03.023
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().