EconPapers    
Economics at your fingertips  
 

Spatial statistical methods applied to the 2015 Brazilian energy distribution benchmarking model: Accounting for unobserved determinants of inefficiencies

Guilherme Dôco Roberti Gil, Marcelo Azevedo Costa, Ana Lúcia Miranda Lopes and Vinícius Diniz Mayrink

Energy Economics, 2017, vol. 64, issue C, 373-383

Abstract: In 2015 the Brazilian regulator presented a DEA benchmarking model to set the regulatory operational cost goals, to be reached in four years for 61 electricity distribution utilities. The DEA model uses: adjusted operational cost as the input variable, seven output variables and weight restrictions. Although non-discretionary variables or environmental variables are available in the dataset, the regulator argued that no statistically significant correlation was found between the DEA efficiency scores and the non-discretionary variables. This study evaluates the statistical correlation between the DEA efficiency scores and the available environmental variables. Spatial statistic methods are used to show that the efficiency scores are geographically correlated. Furthermore, due to Brazil's environmental diversity and large territory it is unlikely that only one environmental component is sufficient to adjust inefficiencies across the Brazilian territory. Thus, a new combined environmental variable is proposed. Finally, a second stage model using the proposed environmental variable and accounting for a spatial latent structure is presented. Results show major differences between original and corrected efficiency scores, mainly for utilities located in harsh environments and which originally achieved lower efficiency scores.

Keywords: Data envelopment analysis; Second stage analysis; Spatial statistics; Bayesian analysis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988317301160
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:64:y:2017:i:c:p:373-383

DOI: 10.1016/j.eneco.2017.04.009

Access Statistics for this article

Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant

More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:eneeco:v:64:y:2017:i:c:p:373-383