Comparison of data-rich and small-scale data time series models generating probabilistic forecasts: An application to U.S. natural gas gross withdrawals
Kannika Duangnate and
James W. Mjelde
Energy Economics, 2017, vol. 65, issue C, 411-423
Abstract:
Time series models derived from using data-rich and small-scale data techniques are estimated to examine: 1) if data-rich methods forecast natural withdrawals better than typical small-scale data, time series methods; and 2) how the number of unobservable factors included in a data-rich model influences the model's probabilistic forecasting performance. Data rich technique employed is the factor-augmented vector autoregressive (FAVAR) approach using 179 data series; whereas the small-scale technique uses five data series. Conclusions drawn are ambiguous. Exploiting estimated factors improves the forecasting ability, but including too many factors tends to exacerbate probabilistic forecasts performance. Factors, however, may add information about seasonality for forecasting natural gas withdrawals. Results of this study indicate the necessity to examine several measures and to take into account the measure(s) that best meets the purpose of the forecasts.
Keywords: FAVAR; Prequential forecasting; Probability forecasting; Model selection; Energy forecasting (search for similar items in EconPapers)
JEL-codes: Q43 Q47 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988317301317
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:65:y:2017:i:c:p:411-423
DOI: 10.1016/j.eneco.2017.04.024
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().