Economics at your fingertips  

Contributions to sector-level carbon intensity change: An integrated decomposition analysis

Qunwei Wang (), Ye Hang, Bin Su and Peng Zhou ()

Energy Economics, 2018, vol. 70, issue C, 12-25

Abstract: Exploring the factors driving sector-level carbon intensity change is important to inform targeted emission reduction policies. This paper proposes an integrated decomposition approach, combining production-theoretical decomposition analysis (PDA), index decomposition analysis (IDA) and attribution analysis (AA). The proposed approach can decompose sector-level carbon intensity change into nine driving factors, including two new pre-defined factors (i.e. the potential regional output structure effect and the output gap effect). This provides more detailed information about the influence of production technology related components, i.e. technical efficiency and technological change, and the contribution of each region to the individual driving factor. Industrial sectors across 30 provinces in China are used to demonstrate the integrated decomposition approach. The decomposition and attribution results show that the desirable output technological change effect is the dominant factor in decreasing industrial carbon intensity, of which Hebei, Shandong, Jiangsu, Liaoning and Henan are the main contributors. The potential energy intensity effect reduces industrial carbon intensity remarkably as well, mainly due to Henan, Liaoning, Shandong, Hunan and Inner Mongolia. Provinces are classifies into four performance groups based on the attribution results. Targeted industrial carbon intensity reduction policies should be implemented in different groups of provinces.

Keywords: Sector-level carbon intensity; Production-theoretical decomposition analysis; Index decomposition method; Attribution analysis; China (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/j.eneco.2017.12.014

Access Statistics for this article

Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant

More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Haili He ().

Page updated 2020-06-18
Handle: RePEc:eee:eneeco:v:70:y:2018:i:c:p:12-25