EconPapers    
Economics at your fingertips  
 

Stochastic convergence in per capita CO2 emissions. An approach from nonlinear stationarity analysis

María José Presno, Manuel Landajo and Paula Fernández González

Energy Economics, 2018, vol. 70, issue C, 563-581

Abstract: This paper studies stochastic convergence of per capita CO2 emissions in 28 OECD countries for the 1901–2009 period. The analysis is carried out at two aggregation levels: first for the whole set of countries (joint analysis) and then separately for developed and developing states (group analysis). A powerful time series methodology - adapted to a nonlinear framework that allows for quadratic trends with possibly smooth transition between regimes - is applied. This approach provides more robust conclusions in convergence path analysis, enabling (a) robust detection of the presence, and if so, the number of changes in the level and/or slope of the trend of the series; (b) inferences on stationarity of relative per capita CO2 emissions, conditionally on the presence of breaks and smooth transitions between regimes; and (c) estimation of change locations in the convergence paths. Finally, as stochastic convergence is attained when both stationarity around a trend and β-convergence simultaneously hold, the linear approach proposed by Tomljanovich and Vogelsang (2002) is extended in order to allow for more general, quadratic models. Overall, joint analysis finds some evidence of stochastic convergence in per capita CO2 emissions. Some dispersion in terms of β-convergence is detected by the group analysis, particularly among developed countries. This is in accordance with per capita GDP not being the sole determinant of convergence in emissions, with factors like search for more efficient technologies, fossil fuel substitution, innovation, and possibly industry outsourcing, also having a crucial role.

Keywords: Stationarity testing; Quadratic trends; Structural change; Smooth transition; Stochastic convergence; β-convergence; Per capita CO2 emissions (search for similar items in EconPapers)
JEL-codes: C12 C22 C53 Q28 Q53 Q56 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988315002753
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:70:y:2018:i:c:p:563-581

DOI: 10.1016/j.eneco.2015.10.001

Access Statistics for this article

Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant

More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:eneeco:v:70:y:2018:i:c:p:563-581