Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model
Zhiyuan Pan,
Qing Wang,
Yudong Wang and
Li Yang
Energy Economics, 2018, vol. 72, issue C, 177-187
Abstract:
In this paper, we introduce the functional coefficient to existing mixed-frequency data sampling (MIDAS) regression to make the parameter change over time. The proposed time-varying parameter MIDAS (TVP-MIDAS) is employed to forecast the U.S. real GDP growth using crude oil prices. We find the out-of-sample predictability of GDP growth across different forecasting horizons. The percent reduction of mean squared predictive error achieves 14% when the nonlinear oil price measure is employed. The TVP-MIDAS can outperform a series of competing models including the OLS regression with quarterly oil price, the constant coefficient and Markov regime switching MIDAS regressions.
Keywords: Functional coefficient; Mixed-frequency data sampling; Crude oil price; Real GDP growth; Forecasting (search for similar items in EconPapers)
JEL-codes: C32 C53 Q43 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988318301336
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:72:y:2018:i:c:p:177-187
DOI: 10.1016/j.eneco.2018.04.008
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().