Integration of behavioral effects from vehicle choice models into long-term energy systems optimization models
Kalai Ramea,
David S. Bunch,
Christopher Yang,
Sonia Yeh and
Joan M. Ogden
Energy Economics, 2018, vol. 74, issue C, 663-676
Abstract:
Long-term energy systems models have been used extensively in energy planning and climate policy analysis. However, specifically in energy systems optimization models, heterogeneity of consumer preferences for competing energy technologies (e.g., vehicles), has not been adequately represented, leading to behaviorally unrealistic modeling results. This can lead to policy analysis results that are viewed by stakeholders as clearly deficient. This paper shows how heterogeneous consumer behavioral effects can be introduced into these models in the form of perceived disutility costs, to more realistically capture consumer choice in making technology purchase decisions. We developed a novel methodology that incorporates the theory of a classic consumer choice model into a commonly used long-term energy systems modeling framework using a case study of light-duty vehicles. A diverse set of consumer segments (thirty-six) is created to represent observable, identifiable differences in factors such as annual driving distances and attitude towards risks of new technology. Non-monetary or “disutility” costs associated with these factors are introduced to capture the differences in preferences across consumer segments for various technologies. We also create clones within each consumer segment to capture randomly distributed unobservable differences in preferences. We provide and review results for a specific example that includes external factors such as recharging/refueling station availability, battery size of electric vehicles, recharging time and perceived technology risks. Although the example is for light-duty vehicles in the US using a specific modeling system, this approach can be implemented more broadly to model the adoption of consumer technologies in other sectors or regions in similar energy systems modeling frameworks.
Keywords: Energy systems models; Consumer behavior; Vehicle choice; Transportation; Light-duty vehicles (search for similar items in EconPapers)
JEL-codes: C01 C35 C44 C54 C61 D12 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988318302573
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:74:y:2018:i:c:p:663-676
DOI: 10.1016/j.eneco.2018.06.028
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().