EconPapers    
Economics at your fingertips  
 

Crude oil risk forecasting: New evidence from multiscale analysis approach

Kaijian He, Geoffrey K.F. Tso, Yingchao Zou and Jia Liu

Energy Economics, 2018, vol. 76, issue C, 574-583

Abstract: Fluctuations in the crude oil price allied to risk have increased significantly over the last decade frequently varying at different risk levels. Although existing models partially predict such variations, so far, they have been unable to predict oil prices accurately in this highly volatile market. The development of an effective, predictive model has therefore become a prime objective of research in this field. Our approach, albeit based in part on previous research, develops an original methodology, in that we have created a risk forecasting model with the ability to predict oil price fluctuations caused by changes in both fundamental and transient risk factors. We achieve this by disintegrating the multi-scale risk-structure of the crude oil market using Variational Mode Decomposition. Normal and transient risk factors are then extracted from the crude oil price using Variational Mode Decomposition and modelled separately using the Quantile Regression Neural Network (QRNN) model. Both risk factors are integrated and ensembled to produce the risk estimates. We then apply our proposed risk forecasting model to predicting future downside risk level in three major crude oil markets, namely the West Taxes Intermediate (WTI), the Brent Market, and the OPEC market. The results demonstrate that our model has the ability to capture downside risk estimates with significantly improved precision, thus reducing estimation errors and increasing forecasting reliability.

Keywords: Crude oil risk forecasting; Variational Mode Decomposition; Value at Risk; Normal Risk; Transient Risk; Multiscale analysis; Quantile Regression Neural Network model (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988318303979
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:76:y:2018:i:c:p:574-583

Access Statistics for this article

Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant

More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2019-01-19
Handle: RePEc:eee:eneeco:v:76:y:2018:i:c:p:574-583