Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae
Hans Manner,
Farzad Alavi Fard,
Armin Pourkhanali and
Laleh Tafakori
Energy Economics, 2019, vol. 78, issue C, 143-164
Abstract:
We consider the problem of modelling and forecasting the distribution of a vector of prices from interconnected electricity markets using a flexible class of drawable vine copula models, where we allow the dependence parameters of the constituting bivariate copulae to be time-varying. We undertake in-sample and out-of-sample tests using daily electricity prices, and evidence that our model provides accurate forecasts of the underlying distribution and outperforms a set of competing models in their abilities to forecast one-day-ahead conditional quantiles of a portfolio of electricity prices. Our study is conducted in the Australian National Electricity Market (NEM), which is the most efficient power auction in the world. Electricity prices exhibit highly stylised features such as extreme price spikes, price dependency between regional markets, correlation asymmetry and non-linear dependency. The developed approach can be used as a risk management tool in the electricity retail industry, which plays an integral role in the apparatus of modern energy markets. Electricity retailers are responsible for the efficient distribution of electricity, while being exposed to market risk with extreme magnitudes.
Keywords: Electricity prices; SCAR model; Dvine copula; Back-testing; Nonlinear dependence (search for similar items in EconPapers)
JEL-codes: C32 C53 G17 Q47 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988318304365
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:78:y:2019:i:c:p:143-164
DOI: 10.1016/j.eneco.2018.10.034
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().