EconPapers    
Economics at your fingertips  
 

Rare breakthroughs vs. incremental development in R&D strategy for an early-stage energy technology

Emily Fertig

Energy Policy, 2018, vol. 123, issue C, 711-721

Abstract: Uncertainty in technological learning is a crucial factor in planning research, development, and demonstration (RD&D) strategies. Nevertheless, most previous work either models technological change as deterministic or accounts for uncertainty without fully capturing the recourse feature of the problem. This paper improves upon these approaches by developing a real options-based stochastic dynamic programming method for valuing and planning low-carbon energy RD&D investment and is the first of its kind to disaggregate the effects of R&D and learning-by-doing. This simplified model captures the relevant features of the problem and provides general insights on RD&D strategy under technological uncertainty. Results indicate that imminent deployment, high cost, lower exogenous cost reductions, and lower program funds all promote R&D spending over learning-by-doing, since under these circumstances a breakthrough, rather than slow and consistent cost reductions, will render the program successful.

Keywords: Real options; R&D; Stochastic dynamic programming; Carbon capture and sequestration; Managerial flexibility; Endogenous technological change (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301421518305238
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:123:y:2018:i:c:p:711-721

DOI: 10.1016/j.enpol.2018.08.019

Access Statistics for this article

Energy Policy is currently edited by N. France

More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:enepol:v:123:y:2018:i:c:p:711-721