Pattern identification for wind power forecasting via complex network and recurrence plot time series analysis
Avraam Charakopoulos,
Theodoros Karakasidis and
Loannis Sarris
Energy Policy, 2019, vol. 133, issue C
Abstract:
Renewable energy sources, where wind energy is an important part, are increasingly participating in developing economies and environmental benefits. Wind power is strongly dependent on wind velocity and thus identifying patterns in wind speed data is an important issue for forecasting the generated power from a wind turbine and it has significant importance for the renewable energy market operations. In this work we approach the problem of identification of the underlying dynamic characteristics and patterns of wind behavior using two approaches of non-linear time series analysis tools: Recurrence Plots (RPs) and Complex Network analysis. The proposed methodology is applied on wind time series collected by cup anemometers located on a wind turbine installed in Greece. We show that the proposed approach provides useful information which can characterize distinct two time intervals of the data, one ranging from 2 to 4.5 days and another from 5 to 8.5 days. Also analysis can identify and detect dynamical transitions in the system's behavior and also reveals information about the changes in state inside the whole time series. The results will be useful in wind markets, for the prediction of the produced wind energy and also will be helpful for wind farm site selection.
Keywords: Wind energy market; Recurrence plots; Complex networks; Wind forecasting (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030142151930521X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:133:y:2019:i:c:s030142151930521x
DOI: 10.1016/j.enpol.2019.110934
Access Statistics for this article
Energy Policy is currently edited by N. France
More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().