Exploring the complex origins of energy poverty in The Netherlands with machine learning
Francesco Dalla Longa,
Bart Sweerts and
Bob van der Zwaan ()
Energy Policy, 2021, vol. 156, issue C
Abstract:
Energy poverty is receiving increased attention in developed countries like the Netherlands. Although it only affects a relatively small share of the population, it constitutes a stern challenge that is hard to quantify and monitor, hence difficult to effectively tackle through adequate policy measures. In this paper we introduce a framework to categorize energy poverty risk based on income and energy expenditure. We propose the use of a machine learning classifier to predict energy poverty risk from a broad set of socio-economic parameters: house value, ownership and age, household size, and average population density. While income remains the single most important predictor, we find that the inclusion of these additional socio-economic features is indispensable in order to achieve high prediction reliability. This result forms an indication of the complex nature of the mechanisms underlying energy poverty. Our findings are valid at different geographical scales, i.e. both for single households and for entire neighborhoods. Extensive sensitivity analysis shows that our results are independent of the precise position of risk category boundaries. The outcomes of our study indicate that machine learning could be used as an effective means to monitor energy poverty, and assist the design and implementation of appropriate policy measures.
Keywords: Energy poverty; Energy affordability; Household energy demand; SDG 7; The Netherlands; Machine learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301421521002433
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:156:y:2021:i:c:s0301421521002433
DOI: 10.1016/j.enpol.2021.112373
Access Statistics for this article
Energy Policy is currently edited by N. France
More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().