Lockdown impacts on residential electricity demand in India: A data-driven and non-intrusive load monitoring study using Gaussian mixture models
Ramit Debnath,
Ronita Bardhan,
Ashwin Misra,
Tianzhen Hong,
Vida Rozite and
Michael H. Ramage
Energy Policy, 2022, vol. 164, issue C
Abstract:
This study evaluates the effect of complete nationwide lockdown in 2020 on residential electricity demand across 13 Indian cities and the role of digitalisation using a public smart meter dataset. We undertake a data-driven approach to explore the energy impacts of work-from-home norms across five dwelling typologies. Our methodology includes climate correction, dimensionality reduction and machine learning-based clustering using Gaussian Mixture Models of daily load curves. Results show that during the lockdown, maximum daily peak demand increased by 150–200% as compared to 2018 and 2019 levels for one room-units (RM1), one bedroom-units (BR1) and two bedroom-units (BR2) which are typical for low- and middle-income families. While the upper-middle- and higher-income dwelling units (i.e., three (3BR) and more-than-three bedroom-units (M3BR)) saw night-time demand rise by almost 44% in 2020, as compared to 2018 and 2019 levels. Our results also showed that new peak demand emerged for the lockdown period for RM1, BR1 and BR2 dwelling typologies. We found that the lack of supporting socioeconomic and climatic data can restrict a comprehensive analysis of demand shocks using similar public datasets, which informed policy implications for India's digitalisation. We further emphasised improving the data quality and reliability for effective data-centric policymaking.
Keywords: COVID-19; Work-from-home; NILM; Machine learning; Mixture models; India (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301421522001112
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:164:y:2022:i:c:s0301421522001112
DOI: 10.1016/j.enpol.2022.112886
Access Statistics for this article
Energy Policy is currently edited by N. France
More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().