Solar lanterns for domestic lighting in India: Viability of central charging station model
A. Chaurey and
T.C. Kandpal
Energy Policy, 2009, vol. 37, issue 11, 4910-4918
Abstract:
About 68 million households in India rely on kerosene as a fuel for domestic lighting. Kerosene-based lighting devices, not only for poor quality of light, but also for the risks of indoor air pollution and fire hazards, etc. are not a desired option for domestic lighting purposes. Solar lantern is a better alternative in terms of its quality of illumination, durability and versatility of use. The dissemination model for solar lantern in India has so far been based on cash sales with or without the incentive of capital subsidy. This paper analyses several dissemination models including rental and fee-for-service based on centralized solar charging station concept for CFL- and LED-based designs of solar lanterns available in India. The basis of comparison is the acceptable daily costs or rental to the user as well as to the owner of the charging station. Further, the paper studies the impact of likely escalation in kerosene price on the acceptable daily rental and estimates the amount of subsidy required to make the charging station model viable for disseminating solar lanterns among rural households.
Keywords: Solar; lanterns; Fee-for-service; Central; charging; station (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00466-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:37:y:2009:i:11:p:4910-4918
Access Statistics for this article
Energy Policy is currently edited by N. France
More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().