Indirect fuel use change (IFUC) and the lifecycle environmental impact of biofuel policies
Deepak Rajagopal,
Gal Hochman and
David Zilberman
Energy Policy, 2011, vol. 39, issue 1, 228-233
Abstract:
A common assumption in lifecycle assessment (LCA) based estimates of greenhouse gas (GHG) benefits (or costs) of renewable fuel such as biofuel is that it simply replaces an energy-equivalent amount of fossil fuel and that total fuel consumption remains unchanged. However, the adoption of renewable fuels will affect the price of fuel and therefore affect total fuel consumption which, may increase or decrease depending on the policy regime and market conditions. Using a representative two-region model of the global oil market in which, one region implements a domestic biofuel mandate and the other does not, we show that the net change in global fuel consumption due to the policy, which we term indirect fuel use change (IFUC), can have a significant impact on the net GHG emissions associated with biofuel. If LCA-based regulations are designed to account for indirect emissions such as indirect land use change, then we argue that IFUC emissions cannot be ignored. Our work also shows how different policies can affect the environmental impact from adopting a given clean technology differently.
Keywords: Biofuels; Lifecycle; Emissions (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (44)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00721-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:39:y:2011:i:1:p:228-233
Access Statistics for this article
Energy Policy is currently edited by N. France
More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().