What drives renewable energy development?
L. Alagappan,
R. Orans and
Chi-Keung Woo
Energy Policy, 2011, vol. 39, issue 9, 5099-5104
Abstract:
This viewpoint reviews renewable energy development in 14 markets that differ in market structure (restructured vs. not restructured), use of feed-in-tariff (FIT) (yes vs. no), transmission planning (anticipatory vs. reactive), and transmission interconnection cost allocated to a renewable generator (high vs. low). We find that market restructuring is not a primary driver of renewable energy development. Renewable generation has the highest percent of total installed capacity in markets that use a FIT, employ anticipatory transmission planning, and have loads or end-users paying for most, if not all, of the transmission interconnection costs. In contrast, renewable developers have been less successful in markets that do not use a FIT, employ reactive transmission planning, and have generators paying for most, if not all, of the transmission interconnection costs. While these policies can lead to higher penetration of renewable energy in the short run, their high cost to ratepayers can threaten the economic sustainability of renewable energy in the long-run.
Keywords: Renewable; energy; development; Transmission; planning; Interconnection; cost (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (51)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301421511004575
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:39:y:2011:i:9:p:5099-5104
Access Statistics for this article
Energy Policy is currently edited by N. France
More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().