The carbon footprint of water management policy options
Eleeja Shrestha,
Sajjad Ahmad,
Walter Johnson and
Jacimaria R. Batista
Energy Policy, 2012, vol. 42, issue C, 201-212
Abstract:
The growing concerns of global warming and climate change have forced water providers to scrutinize the energy for water production and the greenhouse gas (GHG) emissions associated with it. A system dynamics model is developed to estimate the energy requirements to move water from the water source to the distribution laterals of the Las Vegas Valley and to analyze the carbon footprint associated with it. The results show that at present nearly 0.85 million megawatt hours per year (MWh/y) energy is required for conveyance of water in distribution laterals of the Valley from Lake Mead resulting in approximately 0.53 million metric tons of CO2 emissions per year. Considering the current mix of fuel source, the energy and CO2 emissions will increase to 1.34millionMWh/y and 0.84 million metric tons per year, respectively, by the year 2035. Various scenarios including change in population growth rate, water conservation, increase in water reuse, change in the Lake level, change in fuel sources, change in emission rates, and combination of multiple scenarios are analyzed to study their impact on energy requirements and associated CO2 emissions.
Keywords: Water conveyance; Carbon footprint; System dynamics (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301421511009724
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:42:y:2012:i:c:p:201-212
DOI: 10.1016/j.enpol.2011.11.074
Access Statistics for this article
Energy Policy is currently edited by N. France
More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().