EconPapers    
Economics at your fingertips  
 

Implementing peak load reduction algorithms for household electrical appliances

Ndumiso G. Dlamini and Fabien Cromieres

Energy Policy, 2012, vol. 44, issue C, 280-290

Abstract: Considering household appliance automation for reduction of household peak power demand, this study explored aspects of the interaction between household automation technology and human behaviour. Given a programmable household appliance switching system, and user-reported appliance use times, we simulated the load reduction effectiveness of three types of algorithms, which were applied at both the single household level and across all 30 households. All three algorithms effected significant load reductions, while the least-to-highest potential user inconvenience ranking was: coordinating the timing of frequent intermittent loads (algorithm 2); moving period-of-day time-flexible loads to off-peak times (algorithm 1); and applying short-term time delays to avoid high peaks (algorithm 3) (least accommodating). Peak reduction was facilitated by load interruptibility, time of use flexibility and the willingness of users to forgo impulsive appliance use. We conclude that a general factor determining the ability to shift the load due to a particular appliance is the time-buffering between the service delivered and the power demand of an appliance. Time-buffering can be ‘technologically inherent’, due to human habits, or realised by managing user expectations. There are implications for the design of appliances and home automation systems.

Keywords: Demand-side management; Household automation; Behaviour (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301421512000778
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:44:y:2012:i:c:p:280-290

DOI: 10.1016/j.enpol.2012.01.051

Access Statistics for this article

Energy Policy is currently edited by N. France

More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:enepol:v:44:y:2012:i:c:p:280-290