Cost-effectiveness of high-efficiency appliances in the U.S. residential sector: A case study
Michael A. McNeil and
Nicholas Bojda
Energy Policy, 2012, vol. 45, issue C, 33-42
Abstract:
This paper presents an analysis of the cost-effectiveness of high-efficiency appliances in the U.S. residential sector using cost and efficiency data developed as part of the regulatory process of the U.S. Department of Energy's Appliances and Commercial Equipment Standards Program. These data are presented as a case study in the development of an ‘efficiency technology database’ which can be expanded and published as a resource to other researchers and policy makers seeking scenarios that optimize efficiency policies and forecast their likely impacts on energy demand and greenhouse gas emissions. The use of this data to evaluate cost-effectiveness according to a variety of metrics is demonstrated using the example of one refrigerator–freezer product class. Cost-effectiveness is then evaluated in terms of cost of conserved energy for refrigerators, room air conditioners, water heaters, cooking equipment, central air conditioners and gas furnaces. The resulting potential of cost-effective improvement ranges from 1% to 53% of energy savings, with a typical potential of 15–20%.
Keywords: Appliances; Efficiency; Cost-effectiveness (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301421511010561
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:45:y:2012:i:c:p:33-42
DOI: 10.1016/j.enpol.2011.12.050
Access Statistics for this article
Energy Policy is currently edited by N. France
More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().