EconPapers    
Economics at your fingertips  
 

Energy conservation for international dry bulk carriers via vessel speed reduction

Ching-Chin Chang and Chia-Hong Chang

Energy Policy, 2013, vol. 59, issue C, 710-715

Abstract: This study uses an activity-based method to investigate the fuel consumption and corresponding CO2 emissions of Capesize, Panamax, Supramax, and Handysize dry bulk carriers. The emission and energy reductions are estimated for speed reductions of 10%, 20%, and 30%. The CATCH (cost of averting a tonne of CO2—eq heating) model is applied to evaluate the cost efficiency of speed reduction. Results show that speed reductions of 10%, 20%, and 30% reduce fuel consumption by 27.1%, 48.8%, and 60.3% and CO2 emissions by 19%, 36%, and 51%, respectively. Speed reduction leads to emission reductions, with greater reductions for larger ships. CATCH values are positive, indicating that reducing speed increases cost. Line C3 of Capesize is used to determine the optimal ship number and operational speed under energy conservation. The minimum number of vessels in service is 9, with an average operational speed of 14.53 knots and one port call per week. If speed is reduced by 10%, 20%, and 30%, one, two, and four additional ships are needed, respectively.

Keywords: Activity-based model; Dry bulk carrier; CO2 emissions (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301421513002644
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:59:y:2013:i:c:p:710-715

DOI: 10.1016/j.enpol.2013.04.025

Access Statistics for this article

Energy Policy is currently edited by N. France

More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:enepol:v:59:y:2013:i:c:p:710-715