EconPapers    
Economics at your fingertips  
 

What is the best practice for benchmark regulation of electricity distribution? Comparison of DEA, SFA and StoNED methods

Timo Kuosmanen, Antti Saastamoinen and Timo Sipiläinen

Energy Policy, 2013, vol. 61, issue C, 740-750

Abstract: Electricity distribution is a natural local monopoly. In many countries, the regulators of this sector apply frontier methods such as data envelopment analysis (DEA) or stochastic frontier analysis (SFA) to estimate the efficient cost of operation. In Finland, a new StoNED method was adopted in 2012. This paper compares DEA, SFA and StoNED in the context of regulating electricity distribution. Using data from Finland, we compare the impacts of methodological choices on cost efficiency estimates and acceptable cost. While the efficiency estimates are highly correlated, the cost targets reveal major differences. In addition, we examine performance of the methods by Monte Carlo simulations. We calibrate the data generation process (DGP) to closely match the empirical data and the model specification of the regulator. We find that the StoNED estimator yields a root mean squared error (RMSE) of 4% with the sample size 100. Precision improves as the sample size increases. The DEA estimator yields an RMSE of approximately 10%, but performance deteriorates as the sample size increases. The SFA estimator has an RMSE of 144%. The poor performance of SFA is due to the wrong functional form and multicollinearity.

Keywords: Frontier estimation; Nonparametric production analysis; Productive efficiency (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (56)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301421513004461
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:61:y:2013:i:c:p:740-750

DOI: 10.1016/j.enpol.2013.05.091

Access Statistics for this article

Energy Policy is currently edited by N. France

More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:enepol:v:61:y:2013:i:c:p:740-750