EconPapers    
Economics at your fingertips  
 

Efficient estimation of lower and upper bounds for pricing higher-dimensional American arithmetic average options by approximating their payoff functions

Xing Jin and Cheng-Yu Yang

International Review of Financial Analysis, 2016, vol. 44, issue C, 65-77

Abstract: In this paper, we develop an efficient payoff function approximation approach to estimating lower and upper bounds for pricing American arithmetic average options with a large number of underlying assets. The crucial step in the approach is to find a geometric mean which is more tractable than and highly correlated with a given arithmetic mean. Then the optimal exercise strategy for the resultant American geometric average option is used to obtain a low-biased estimator for the corresponding American arithmetic average option. This method is particularly efficient for asset prices modeled by jump-diffusion processes with deterministic volatilities because the geometric mean is always a one-dimensional Markov process regardless of the number of underlying assets and thus is free from the curse of dimensionality. Another appealing feature of our method is that it provides an extremely efficient way to obtain tight upper bounds with no nested simulation involved as opposed to some existing duality approaches. Various numerical examples with up to 50 underlying stocks suggest that our algorithm is able to produce computationally efficient results.

Keywords: American arithmetic average option; Optimal exercise time; Arithmetic average; Dimension reduction (search for similar items in EconPapers)
JEL-codes: G13 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1057521916000107
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finana:v:44:y:2016:i:c:p:65-77

DOI: 10.1016/j.irfa.2016.01.009

Access Statistics for this article

International Review of Financial Analysis is currently edited by B.M. Lucey

More articles in International Review of Financial Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:finana:v:44:y:2016:i:c:p:65-77