EconPapers    
Economics at your fingertips  
 

Trade the tweet: Social media text mining and sparse matrix factorization for stock market prediction

Andrew Sun, Michael Lachanski () and Frank Fabozzi ()

International Review of Financial Analysis, 2016, vol. 48, issue C, 272-281

Abstract: We investigate the potential use of textual information from user-generated microblogs to predict the stock market. Utilizing the latent space model proposed by Wong et al. (2014), we correlate the movements of both stock prices and social media content. This study differs from models in prior studies in two significant ways: (1) it leverages market information contained in high-volume social media data rather than news articles and (2) it does not evaluate sentiment. We test this model on data spanning from 2011 to 2015 on a majority of stocks listed in the S&P 500 Index and find that our model outperforms a baseline regression. We conclude by providing a trading strategy that produces an attractive annual return and Sharpe ratio.

Keywords: Tweets; Social media text mining; Sparse matrix factorization; Stock market prediction (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1057521916301600
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finana:v:48:y:2016:i:c:p:272-281

DOI: 10.1016/j.irfa.2016.10.009

Access Statistics for this article

International Review of Financial Analysis is currently edited by B.M. Lucey

More articles in International Review of Financial Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:finana:v:48:y:2016:i:c:p:272-281