A novel two-stage approach for cryptocurrency analysis
Boyu Yang,
Yuying Sun and
Shouyang Wang
International Review of Financial Analysis, 2020, vol. 72, issue C
Abstract:
Modelling and quantifying the underlying characteristics of the cryptocurrency market has drawn increasing attention since Bitcoin went online in 2009. This study proposes a two-stage decomposition and composition method (2SDC) that begins with a Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD) for better interpreting cryptocurrency formations. This study involves daily closing price data from six cryptocurrencies (i.e., Bitcoin, Ethereum, Bitcoin Cash, Litecoin, Monero and Dash) from July 23rd, 2017 to July 23rd, 2019. In the first stage, six time series are jointly decomposed into 10 independent intrinsic mode functions (IMF) from high to low frequency plus one residual. In the second stage, the IMFs for each cryptocurrency are composed into three components based on Wilcoxon signed-rank test, including high and low frequency components and a long-term trend. These three multi-scale components can be interpreted as short-term fluctuations caused by investor sentiment and micro-structure, the effect of significant events and fundamental values. Furthermore, we demonstrated that the low and high frequency compositions are determining factors of cryptocurrency prices, which supports for the existing evidence (e.g. Bouoiyour, Selmi, Tiwari, & Olayeni, 2016; Ji, Bouri, Lau, & Roubaud, 2019).
Keywords: Bitcoin; Cryptocurrency; Noise-assisted multivariate empirical mode decomposition; Two-stage decomposition and composition (search for similar items in EconPapers)
JEL-codes: C49 G15 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1057521920302118
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:finana:v:72:y:2020:i:c:s1057521920302118
DOI: 10.1016/j.irfa.2020.101567
Access Statistics for this article
International Review of Financial Analysis is currently edited by B.M. Lucey
More articles in International Review of Financial Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().