EconPapers    
Economics at your fingertips  
 

The role of earnings components and machine learning on the revelation of deteriorating firm performance

Ibrahim Onur Oz, Tezer Yelkenci and Gorkem Meral

International Review of Financial Analysis, 2021, vol. 77, issue C

Abstract: This study explores the proficiency of earnings components for detecting earnings and cash flows distress. The authors examine the deterioration of these two performance indicators for two aggregate and two disaggregate earnings models, each of which is subject to examination through different machine learning, non-parametric, and parametric methods. The results, obtained from firms in 22 countries, reveal that the current information content of earnings not only has explanatory power for future earnings and cash flows but also can support advance classifications of the two performance indicators as negative or positive. Each aggregate and disaggregate model offers distress classification ability, the disaggregation of earnings generates better, robust detection accuracies for cash flow distress, while aggregate earnings model provides improved classification for prospective earnings distress. The findings also suggest that machine learning estimation methods provide superior distress detection compared to a parametric method, despite its still decent performance.

Keywords: Cash flows; Earnings; Distress prediction; Machine learning; Estimation methods (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1057521921001332
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finana:v:77:y:2021:i:c:s1057521921001332

DOI: 10.1016/j.irfa.2021.101797

Access Statistics for this article

International Review of Financial Analysis is currently edited by B.M. Lucey

More articles in International Review of Financial Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:finana:v:77:y:2021:i:c:s1057521921001332