EconPapers    
Economics at your fingertips  
 

Long-term adjusted volatility: Powerful capability in forecasting stock market returns

Rui Qiu, Jing Liu and Yan Li

International Review of Financial Analysis, 2023, vol. 86, issue C

Abstract: We develop the long-term adjusted volatility (LV_ADJ) by removing the interference information of short-term volatility from the simple long-term volatility and examine the role of LV_ADJ in the predictability of stock market returns. Using a sample from January 2000 to December 2019 and considering 19 popular predictors, LV_ADJ positively predicts the next-month returns of S&P 500 and the univariate model with LV_ADJ has the best forecasting performance with adjusted in-sample r-squared of 3.825%, out-of-sample r-squared of 3.356%, return gains of 5.976%, CER gains of 4.708 and Sharpe ratio gains of 0.394. The predictive information of LV_ADJ is independent of that obtained from the 19 popular predictors. Furthermore, we find that LV_ADJ also has predictive power for long-term (3–12 months) stock returns, and can forecast returns of industry portfolios and characteristic portfolios.

Keywords: Long-term adjusted volatility; Short-term volatility; Return predictability; Out-of-sample forecasting (search for similar items in EconPapers)
JEL-codes: C22 G11 G12 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1057521923000467
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finana:v:86:y:2023:i:c:s1057521923000467

DOI: 10.1016/j.irfa.2023.102530

Access Statistics for this article

International Review of Financial Analysis is currently edited by B.M. Lucey

More articles in International Review of Financial Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:finana:v:86:y:2023:i:c:s1057521923000467