EconPapers    
Economics at your fingertips  
 

Limited information limits accuracy: Whether ensemble empirical mode decomposition improves crude oil spot price prediction?

Kunliang Xu and Weiqing Wang

International Review of Financial Analysis, 2023, vol. 87, issue C

Abstract: A reliable crude oil price forecast is important for market pricing. Despite the widespread use of ensemble empirical mode decomposition (EEMD) in financial time series forecasting, the one-time decomposition on the entire time series leads the in-sample data to be affected by the out-of-sample data. Consequently, the forecasting accuracy is overstated. This study incorporates a rolling window into two prevalent EEMD-based modeling paradigms, namely decomposition-ensemble and denoising, to ensure that only in-sample time series is processed by EEMD and used for model training. Given the time-consuming process of stepwise preprocessing and model fitting, two non-iterative machine learning algorithms, random vector functional link (RVFL) neural network and extreme learning machine (ELM), are used as predictors. Hence, we develop the rolling decomposition-ensemble and rolling denoising paradigms, respectively. Contrary to the majority of prior studies, empirical results based on monthly spot price time series for the Brent and West Texas Intermediate (WTI) markets indicate that EEMD plays a weak role in improving crude oil price forecasts when only the in-sample set is preprocessed. This is compatible with the weak form of the efficient market hypothesis (EMH). Nevertheless, the suggested rolling EEMD-denoising model has an advantage over other employed models for long-term forecasting.

Keywords: Crude oil price prediction; Ensemble empirical mode decomposition; Rolling window; Decomposition-ensemble; Denoising model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1057521923001412
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finana:v:87:y:2023:i:c:s1057521923001412

DOI: 10.1016/j.irfa.2023.102625

Access Statistics for this article

International Review of Financial Analysis is currently edited by B.M. Lucey

More articles in International Review of Financial Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:finana:v:87:y:2023:i:c:s1057521923001412