EconPapers    
Economics at your fingertips  
 

Nonlinear asset pricing in Chinese stock market: A deep learning approach

Shuiyang Pan, Long, Suwan(Cheng), Yiming Wang and Ying Xie

International Review of Financial Analysis, 2023, vol. 87, issue C

Abstract: The redesign of asset pricing models failed to integrate the frequent financial phenomenon that stock markets exhibit a non-linear long- and short-term memory structure. The difficulty lies in developing a nonlinear pricing structure capable of depicting the memory influence of the pricing variable. This paper presents a Long- and Short-Term Memory Neural Network Model (LSTM) to capture the non-linear pricing structure among five elements in the Chinese stock market, including market portfolio return, market capitalisation, book-to-market ratio, earnings factor, and investment factor. The long–short-term memory structure implies that the autocorrelation function of the stock return series decays slowly and has a long-term characteristic. The LSTM model surpasses the standard Fama–French five-factor model in terms of out-of-sample goodness-of-fit and long–short strategy performance. The empirical findings indicate that the LSTM nonlinear model properly represents the nonlinear relationships between the five components.

Keywords: Nonlinear asset pricing; Long–short-term memory neural network; Deep learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1057521923001436
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finana:v:87:y:2023:i:c:s1057521923001436

DOI: 10.1016/j.irfa.2023.102627

Access Statistics for this article

International Review of Financial Analysis is currently edited by B.M. Lucey

More articles in International Review of Financial Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:finana:v:87:y:2023:i:c:s1057521923001436