EconPapers    
Economics at your fingertips  
 

Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants

Yijun Wang, Galina Andreeva and Belen Martin-Barragan

International Review of Financial Analysis, 2023, vol. 90, issue C

Abstract: Given the volatile nature of cryptocurrencies, accurately forecasting cryptocurrency volatility and understanding its determinants are crucial. This paper applies machine learning (ML) techniques to forecast cryptocurrency volatility using internal determinants (e.g., lagged volatility, previous trading information) and external determinants (e.g., technology, financial, and policy uncertainty factors). Both Random Forest and Long Short-Term Memory (LSTM) networks significantly outperform traditional volatility models such as GARCH. Furthermore, we explore two optimization models—Genetic Algorithm and Artificial Bee Colony—to tune the hyper-parameters of LSTM. Our results indicate that the application of these optimization models substantially improves forecasting performance. Moreover, using SHapley Additive exPlanations, an interpretation method, we find that internal determinants play the most important roles in volatility forecasts. Finally, our results show that models trained with determinants from multiple cryptocurrencies outperform those trained with determinants from a single cryptocurrency, suggesting that considering a broader range of determinants can capture the complex dynamics in the cryptocurrency market.

Keywords: Time-series forecasting; Cryptocurrency volatility forecasting; Machine learning techniques; Deep learning techniques; Determinants (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1057521923004301
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finana:v:90:y:2023:i:c:s1057521923004301

DOI: 10.1016/j.irfa.2023.102914

Access Statistics for this article

International Review of Financial Analysis is currently edited by B.M. Lucey

More articles in International Review of Financial Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:finana:v:90:y:2023:i:c:s1057521923004301