EconPapers    
Economics at your fingertips  
 

A machine learning approach in stress testing US bank holding companies

Ahmadou Mustapha Fonton Moffo

International Review of Financial Analysis, 2024, vol. 95, issue PC

Abstract: This paper assesses the utility of machine learning (ML) techniques combined with comprehensive macroeconomic and microeconomic datasets in enhancing risk analysis during stress tests. The analysis unfolds in two stages. I initially benchmark ML’s efficacy in forecasting two pivotal banking variables, net charge-off (NCO) and pre-provision net revenue (PPNR), against traditional linear models. Results underscore the superiority of Random Forest and Adaptive Lasso models in this context. Subsequently, I use these models to project PPNR and NCO for selected bank holding companies under adverse stress scenarios. This exercise feeds into the Tier 1 common equity capital (T1CR) densities simulation. T1CR is the equity capital ratio corrected by some regulatory adjustments to risk-weighted assets. Crucially, findings reveal a pronounced left skew in the T1CR distribution for globally systemically important banks vis-à-vis linear models. By mirroring distress akin to the Great Recession, ML models elucidate intricate macro-financial linkages and enhance risk assessment in downturns.

Keywords: Machine learning; Big data; Forecasting; Scenarios; Stress-test (search for similar items in EconPapers)
JEL-codes: C53 C55 E44 G17 G18 G32 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1057521924004083
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finana:v:95:y:2024:i:pc:s1057521924004083

DOI: 10.1016/j.irfa.2024.103476

Access Statistics for this article

International Review of Financial Analysis is currently edited by B.M. Lucey

More articles in International Review of Financial Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:finana:v:95:y:2024:i:pc:s1057521924004083