Analyzing the green bond index: A novel quantile-based high-dimensional approach
Lizhu Tao,
Wenting Jiang and
Xiaohang Ren
International Review of Financial Analysis, 2024, vol. 96, issue PB
Abstract:
The development of green bond markets is important for advancing energy efficiency, supporting renewable energy, encouraging sustainable investments, and safeguarding the environment. However, the inherent complexity and uncertainty of these markets pose significant challenges for both investors and researchers. In this study, we focus on analyzing the S&P Green Bond Index, a leading benchmark for monitoring the global green bond market. We introduce a new high-dimensional statistical method, the Quantile Group Adaptive Lasso, designed to accurately predict the returns of this index. Our empirical results demonstrate that this model surpasses several established forecasting techniques in both accuracy and stability. Furthermore, our analysis of economic significance highlights the critical influence of traditional energy-related predictors from G7 and BRICS countries on the global green bond markets. We also find that monetary policies and macroeconomic factors, such as M2 money supply, CPI, and government bond yields, play vital roles. Additionally, the robustness of our proposed method is confirmed. Overall, our study provides a powerful tool that not only significantly enhances forecasting performance but also deepens the understanding of the interplay between trends in green bond markets and information from energy sectors and broader economic conditions.
Keywords: Green bond; Forecasting; High-dimensional model; Sustainable investment; Energy efficiency (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S105752192400591X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:finana:v:96:y:2024:i:pb:s105752192400591x
DOI: 10.1016/j.irfa.2024.103659
Access Statistics for this article
International Review of Financial Analysis is currently edited by B.M. Lucey
More articles in International Review of Financial Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().