Performance comparison of multifractal techniques and artificial neural networks in the construction of investment portfolios
Alexandre Silva de Oliveira,
Paulo Sergio Ceretta and
Peter Albrecht ()
Finance Research Letters, 2023, vol. 55, issue PA
Abstract:
This work aims to compare the performance of the traditional portfolios of the S&P500, Markowitz, and Sharpe with the multifractal trend fluctuation portfolios (MF-DFA) and portfolios of artificial neural networks with Student's asymmetric probability classification (ANN-t). In this study, we use daily data for S&P500 stocks between January 18, 2018, and July 12, 2022, where we backtest return and risk metrics such as annual volatility, Value at Risk, Sharpe Ratio, Sortino Ratio, Beta, and Jensen´s Alpha. For both return and risk, we obtain the results confirming that the ANN-t technique might indicate better investment entries, which contradicts the Efficient Market Hypothesis (EMH).
Keywords: Artificial neural networks; Asymmetric probability; Portfolio management (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1544612323001873
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:finlet:v:55:y:2023:i:pa:s1544612323001873
DOI: 10.1016/j.frl.2023.103814
Access Statistics for this article
Finance Research Letters is currently edited by R. Gençay
More articles in Finance Research Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().