EconPapers    
Economics at your fingertips  
 

Sentiment spin: Attacking financial sentiment with GPT-3

Markus Leippold

Finance Research Letters, 2023, vol. 55, issue PB

Abstract: In this study, we explore the susceptibility of financial sentiment analysis to adversarial attacks that manipulate financial texts. With the rise of AI readership in the financial sector, companies are adapting their language and disclosures to fit AI processing better, leading to concerns about the potential for manipulation. In the finance literature, keyword-based methods, such as dictionaries, are still widely used for financial sentiment analysis due to their perceived transparency. However, our research demonstrates the vulnerability of keyword-based approaches by successfully generating adversarial attacks using the sophisticated transformer model, GPT-3. With a success rate of nearly 99% for negative sentences in the Financial Phrase Bank, a widely used database for financial sentiment analysis, we highlight the importance of incorporating robust methods, such as context-aware approaches such as BERT, in financial sentiment analysis.

Keywords: sentiment analysis in financial markets; Keyword-based approach; FinBERT; GPT-3 (search for similar items in EconPapers)
JEL-codes: C8 G2 G38 M48 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S154461232300329X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finlet:v:55:y:2023:i:pb:s154461232300329x

DOI: 10.1016/j.frl.2023.103957

Access Statistics for this article

Finance Research Letters is currently edited by R. Gençay

More articles in Finance Research Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:finlet:v:55:y:2023:i:pb:s154461232300329x