EconPapers    
Economics at your fingertips  
 

Bilateral data asset matching in digital innovation ecosystems: A regret theory approach

Zidan Shan and Yaqi Wang

Finance Research Letters, 2025, vol. 72, issue C

Abstract: This study addresses the bilateral matching of data assets with expected levels in digital innovation ecosystems, incorporating regret-avoidance behavior. First, given the potential hesitation between two parties throughout the matching process, expressing preference information using probability hesitant fuzzy sets is reasonable. Second, the Lance scoring function best captures the gap in expectation and satisfaction between the matching parties. Based on regret theory, we develop a matching strategy that considers both parties’ utilities and satisfaction levels. We construct an optimization model to determine criteria weights using a novel Lance distance metric. Subsequently, a multi-objective optimization model is formulated to maximize satisfaction while ensuring stability in the supply–demand matching process. A numerical example underscores the suggested method's effectiveness and shows its practical applicability in data asset matching scenarios. This study advances the field by integrating psychological factors and sophisticated fuzzy set theory into the decision-making process for allocating data assets in digital ecosystems.

Keywords: Data asset; Bilateral matching; Digital innovation ecosystem; Regret theory (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1544612324016118
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:finlet:v:72:y:2025:i:c:s1544612324016118

DOI: 10.1016/j.frl.2024.106582

Access Statistics for this article

Finance Research Letters is currently edited by R. Gençay

More articles in Finance Research Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:finlet:v:72:y:2025:i:c:s1544612324016118