Non-linearities in financial bubbles: Theory and Bayesian evidence from S&P500
Panayotis Michaelides,
Mike Tsionas and
Konstantinos Konstantakis
Journal of Financial Stability, 2016, vol. 24, issue C, 61-70
Abstract:
The modeling process of bubbles, using advanced mathematical and econometric techniques, is a young field of research. In this context, significant model misspecification could result from ignoring potential non-linearities. More precisely, the present paper attempts to detect and date non-linear bubble episodes. To do so, we use Neural Networks to capture the neglected non-linearities. Also, we provide a recursive dating procedure for bubble episodes. When using data on stock price-dividend ratio S&P500 (1871.1–2014.6), employing Bayesian techniques, the proposed approach identifies more episodes than other bubble tests in the literature, while the common episodes are, in general, found to have a longer duration, which is evidence of an early warning mechanism (EWM) that could have important policy implications.
Keywords: Non-linearities; Bubbles; Neural Networks; Early detection; S&P500 (search for similar items in EconPapers)
JEL-codes: C5 G1 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1572308916300195
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:finsta:v:24:y:2016:i:c:p:61-70
DOI: 10.1016/j.jfs.2016.04.007
Access Statistics for this article
Journal of Financial Stability is currently edited by I. Hasan, W. C. Hunter and G. G. Kaufman
More articles in Journal of Financial Stability from Elsevier
Bibliographic data for series maintained by Catherine Liu ().