A Bayesian approach for more reliable tail risk forecasts
Dan Li,
Adam Clements and
Christopher Drovandi
Journal of Financial Stability, 2023, vol. 64, issue C
Abstract:
This paper demonstrates that existing quantile regression models used for jointly forecasting Value-at-Risk (VaR) and expected shortfall (ES) are sensitive to initial conditions. Given the importance of these measures in financial systems, this sensitivity is a critical issue. A new Bayesian quantile regression approach is proposed for estimating joint VaR and ES models. By treating the initial values as unknown parameters, sensitivity issues can be dealt with. Furthermore, new additive-type models are developed for the ES component that are more robust to initial conditions. A novel approach using the open-faced sandwich (OFS) method is proposed which improves uncertainty quantification in risk forecasts. Simulation and empirical results highlight the improvements in risk forecasts ensuing from the proposed methods.
Keywords: CAViaR; Value-at-risk; Expected shortfall; Sequential Monte Carlo; Uncertainty quantification; Systemic risk (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S157230892200119X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:finsta:v:64:y:2023:i:c:s157230892200119x
DOI: 10.1016/j.jfs.2022.101098
Access Statistics for this article
Journal of Financial Stability is currently edited by I. Hasan, W. C. Hunter and G. G. Kaufman
More articles in Journal of Financial Stability from Elsevier
Bibliographic data for series maintained by Catherine Liu ().