EconPapers    
Economics at your fingertips  
 

Using machine learning to identify incentives in forestry policy: Towards a new paradigm in policy analysis

Daniel Firebanks-Quevedo, Jordi Planas, Kathleen Buckingham, Cristina Taylor, David Silva, Galina Naydenova and René Zamora-Cristales

Forest Policy and Economics, 2022, vol. 134, issue C

Abstract: As 2021 saw the launch of the United Nations Decade on Ecosystem Restoration, it highlighted the need to prepare for success over the decade and to understand what public economic and financial incentives exist to support sustainable forest and landscape restoration. To date, Initiative 20 × 20, a coalition of 18 Latin American countries, has committed to place 50 million hectares under restoration and conservation by 2030. Understanding the public policies in these countries that turn those commitments into action, however, is very labor-intensive, requiring decision makers to read and analyze thousands of pages of documents that span multiple sectors, ministries, and scales that lie outside of their areas of expertise. To address this, we developed a semi-automated policy analysis tool that uses state-of-the-art Natural Language Processing (NLP) methods to mine policy documents, assist the labeling process carried out by policy experts, automatically identify policies that contain incentives and classify them by incentive instrument from the following categories: direct payments, fines, credit, tax deduction, technical assistance and supplies. Our best model achieves an F1 score of 93–94% in both identifying an incentive and its policy instrument, as well as an accuracy of above 90% for 5 out of 6 policy instruments, reducing multiple weeks of policy analysis work to a matter of minutes. In particular, the model properly identified the relative frequency of credits, direct payments, and fines that exist as the primary policy instruments in these countries. We also found that tax deductions, supplies, and technical assistance are much less used among most of the countries and that, oftentimes, the policy documents describe economic incentives for restoration in vague and intangible terms. In addition, our model is designed to constantly improve its performance with more data and feedback from policy experts. Furthermore, while our experiments were run on Spanish policy documents, we designed our framework to be widely scalable to policies from different countries and multiple languages, limited only by the number of languages supported by current multilingual NLP models. Using a standardized approach to generate incentives data could provide an evidence-based and transparent system to find complementarity between policies and help remove barriers for implementers and policymakers and enable a more informed decision-making process.

Keywords: Data-science; Economic-incentives; Environmental-policy; Politics; Machine learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1389934121002306
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:forpol:v:134:y:2022:i:c:s1389934121002306

DOI: 10.1016/j.forpol.2021.102624

Access Statistics for this article

Forest Policy and Economics is currently edited by M. Krott

More articles in Forest Policy and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:forpol:v:134:y:2022:i:c:s1389934121002306