Optimized strategies for nitrogen fertilizer application in Populus plantations in the context of climate change mitigation
Zhuo Ning,
Yuke Hou and
Xia Xu
Forest Policy and Economics, 2024, vol. 159, issue C
Abstract:
Nitrogen (N) fertilizer application increases biomass volume and enhances the carbon sequestration of forest stands. However, overused N fertilizers induce nitrous oxide (N2O), a greenhouse gas with a higher global warming potential than CO2. This study estimates the growth function of Populus stands based on field data, based on which the revised Faustmann model is used to evaluate the optimal rotation and the N fertilizer application rate under different scenarios. Results show that the stand volume is an increasing logarithmic-reciprocal function of the age and N fertilizer rate, and the increment by age is more significant and lasting. When the cost of N2O emissions is considered, the fertilization rate is substantially reduced; a higher carbon price decreases the fertilization rate but prolongs the optimal rotation. Overall, participation in forest carbon projects is economically beneficial even when the costs of greenhouse gas emissions are considered. The research outcomes provide insights into the interplays between the benefits and costs of N fertilizer applications and forest owners' behavior. The conclusions support the accounting of N2O emissions in protocols of forest carbon projects and a more ambitious mitigation goal to push the carbon price on a national scale market.
Keywords: Forest carbon; Faustmann model; Nitrous oxide; Climate change (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1389934123002344
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:forpol:v:159:y:2024:i:c:s1389934123002344
DOI: 10.1016/j.forpol.2023.103139
Access Statistics for this article
Forest Policy and Economics is currently edited by M. Krott
More articles in Forest Policy and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().