EconPapers    
Economics at your fingertips  
 

Detecting corporate tax evasion using a hybrid intelligent system: A case study of Iran

Eghbal Rahimikia (), Shapour Mohammadi, Teymur Rahmani and Mehdi Ghazanfari

International Journal of Accounting Information Systems, 2017, vol. 25, issue C, 1-17

Abstract: This paper concentrates on the effectiveness of using a hybrid intelligent system that combines multilayer perceptron (MLP) neural network, support vector machine (SVM), and logistic regression (LR) classification models with harmony search (HS) optimization algorithm to detect corporate tax evasion for the Iranian National Tax Administration (INTA). In this research, the role of optimization algorithm is to search and find the optimal classification model parameters and financial variables combination. Our proposed system finds optimal structure of the classification model based on the characteristics of the imported dataset. This system has been tested on the data from the food and textile sectors using an iterative structure of 10-fold cross-validation involving 2451 and 2053 test set samples from the tax returns of a two-year period and 1118 and 906 samples as out-of-sample using the tax returns of the consequent year. The results from out-of-sample data show that MLP neural network in combination with HS optimization algorithm outperforms other combinations with 90.07% and 82.45% accuracy, 85.48% and 84.85% sensitivity, and 90.34% and 82.26% specificity, respectively in the food and textile sectors. In addition, there is also a difference between the selected models and obtained accuracies based on the test data and out-of-sample data in both sectors and selected financial variables of every sector.

Keywords: Corporate tax evasion detection; Data mining; Hybrid intelligent system; Support vector machine; Neural network; Harmony search (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1467089515300464
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ijoais:v:25:y:2017:i:c:p:1-17

DOI: 10.1016/j.accinf.2016.12.002

Access Statistics for this article

International Journal of Accounting Information Systems is currently edited by S.V. Grabski

More articles in International Journal of Accounting Information Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ijoais:v:25:y:2017:i:c:p:1-17