EconPapers    
Economics at your fingertips  
 

Data analytics (ab) use in healthcare fraud audits

Jared Koreff, Martin Weisner and Steve G. Sutton

International Journal of Accounting Information Systems, 2021, vol. 42, issue C

Abstract: This study explores how government-adopted audit data analytic tools promote the abuse of power by auditors enabling politically sensitive processes that encourage industry-wide normalization of behavior. In an audit setting, we investigate how a governmental organization enables algorithmic decision-making to alter power relationships to effect organizational and industry-wide change. While prior research has identified discriminatory threats emanating from the deployment of algorithmic decision-making, the effects of algorithmic decision-making on inherently imbalanced power relationships have received scant attention. Our results provide empirical evidence of how systemic and episodic power relationships strengthen each other, thereby enabling the governmental organization to effect social change that might be too politically prohibitive to enact directly. Overall, the results suggest that there are potentially negative effects caused by the use of algorithmic decision-making and the resulting power shifts, and these effects create a different view of the level of purported success attained through auditor use of data analytics.

Keywords: Algorithmic decision-making; Data analytics; Government auditors; Healthcare; Medical fraud detection; Power (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1467089521000257
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ijoais:v:42:y:2021:i:c:s1467089521000257

DOI: 10.1016/j.accinf.2021.100523

Access Statistics for this article

International Journal of Accounting Information Systems is currently edited by S.V. Grabski

More articles in International Journal of Accounting Information Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ijoais:v:42:y:2021:i:c:s1467089521000257