EconPapers    
Economics at your fingertips  
 

V-Matrix: A wave theory of value creation for big data

Guido L. Geerts and Daniel O'Leary

International Journal of Accounting Information Systems, 2022, vol. 47, issue C

Abstract: This paper examines the “V-Matrix” and provides a wave theory life cycle model of organizations’ adoption of big data. The V-Matrix is based on the big data five “V’s”: Volume, Velocity, Variety, Veracity, and Value and captures and enumerates the different potential states that an organization can go through as part of its adoption and evolution towards big data. We extend the V-Matrix to a state space approach in order to provide a characterization of the adoption of big data technologies in an organization. We develop and use a wave theory of implementation to accommodate a firm’s movement through the V-Matrix. Accordingly, the V-Matrix provides a life cycle model of organizational use of the different aspects of big data. In addition, the model can help organizations’ plan for decision-making use of big data as they anticipate movement from one state to another, as they add big data capabilities. As part of this analysis, the paper examines some of the issues that occur in the different states, including synergies and other issues associated with co-occurrence of different V’s with each other. Finally, this paper integrates the V-Matrix with other data analytic life cycles and examines some of the implications of those models.

Keywords: Big Data; Life Cycle; Volume; Velocity; Variety; Veracity; State Space Model; Big Data Theory Development; Life Cycle of Big Data; Wave theory (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1467089522000276
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ijoais:v:47:y:2022:i:c:s1467089522000276

DOI: 10.1016/j.accinf.2022.100575

Access Statistics for this article

International Journal of Accounting Information Systems is currently edited by S.V. Grabski

More articles in International Journal of Accounting Information Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ijoais:v:47:y:2022:i:c:s1467089522000276