Accounting fraud detection using contextual language learning
Indranil Bhattacharya and
Ana Mickovic
International Journal of Accounting Information Systems, 2024, vol. 53, issue C
Abstract:
Accounting fraud is a widespread problem that causes significant damage in the economic market. Detection and investigation of fraudulent firms require a large amount of time, money, and effort for corporate monitors and regulators. In this study, we explore how textual contents from financial reports help in detecting accounting fraud. Pre-trained contextual language learning models, such as BERT, have significantly advanced natural language processing in recent years. We fine-tune the BERT model on Management Discussion and Analysis (MD&A) sections of annual 10-K reports from the Securities and Exchange Commission (SEC) database. Our final model outperforms the textual benchmark model and the quantitative benchmark model from the previous literature by 15% and 12%, respectively. Further, our model identifies five times more fraudulent firm-year observations than the textual benchmark by investigating the same number of firms, and three times more than the quantitative benchmark. Optimizing this investigation process, where more fraudulent observations are detected in the same size of the investigation sample, would be of great economic significance for regulators, investors, financial analysts, and auditors.
Keywords: Accounting fraud detection; Natural Language Processing; BERT; Information Retrieval (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1467089524000150
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ijoais:v:53:y:2024:i:c:s1467089524000150
DOI: 10.1016/j.accinf.2024.100682
Access Statistics for this article
International Journal of Accounting Information Systems is currently edited by S.V. Grabski
More articles in International Journal of Accounting Information Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().