Open data: Quality over quantity
Shazia Sadiq and
Marta Indulska
International Journal of Information Management, 2017, vol. 37, issue 3, 150-154
Abstract:
Open data aims to unlock the innovation potential of businesses, governments, and entrepreneurs, yet it also harbours significant challenges for its effective use. While numerous innovation successes exist that are based on the open data paradigm, there is uncertainty over the data quality of such datasets. This data quality uncertainty is a threat to the value that can be generated from such data. Data quality has been studied extensively over many decades and many approaches to data quality management have been proposed. However, these approaches are typically based on datasets internal to organizations, with known metadata, and domain knowledge of the data semantics. Open data, on the other hand, are often unfamiliar to the user and may lack metadata. The aim of this research note is to outline the challenges in dealing with data quality of open datasets, and to set an agenda for future research to address this risk to deriving value from open data investments.
Keywords: Open data; Data quality (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401216309021
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:37:y:2017:i:3:p:150-154
DOI: 10.1016/j.ijinfomgt.2017.01.003
Access Statistics for this article
International Journal of Information Management is currently edited by Yogesh K. Dwivedi
More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().