EconPapers    
Economics at your fingertips  
 

Analyzing data quality issues in research information systems via data profiling

Otmane Azeroual, Gunter Saake and Eike Schallehn

International Journal of Information Management, 2018, vol. 41, issue C, 50-56

Abstract: The success or failure of a RIS in a scientific institution is largely related to the quality of the data available as a basis for the RIS applications. The most beautiful Business Intelligence (BI) tools (reporting, etc.) are worthless when displaying incorrect, incomplete, or inconsistent data. An integral part of every RIS is thus the integration of data from the operative systems. Before starting the integration process (ETL) of a source system, a rich analysis of source data is required. With the support of a data quality check, causes of quality problems can usually be detected. Corresponding analyzes are performed with data profiling to provide a good picture of the state of the data. In this paper, methods of data profiling are presented in order to gain an overview of the quality of the data in the source systems before their integration into the RIS. With the help of data profiling, the scientific institutions can not only evaluate their research information and provide information about their quality, but also examine the dependencies and redundancies between data fields and better correct them within their RIS.

Keywords: Current research information systems; CRIS; Research information systems; RIS; Research information; Data sources; Data quality; Extraction transformation load; ETL; Data analysis; Data profiling; Science system; Standardization (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401218300975
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:41:y:2018:i:c:p:50-56

DOI: 10.1016/j.ijinfomgt.2018.02.007

Access Statistics for this article

International Journal of Information Management is currently edited by Yogesh K. Dwivedi

More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ininma:v:41:y:2018:i:c:p:50-56