Social media data and post-disaster recovery
Mehdi Jamali,
Ali Nejat,
Souparno Ghosh,
Fang Jin and
Guofeng Cao
International Journal of Information Management, 2019, vol. 44, issue C, 25-37
Abstract:
This study introduces a multi-step methodology for analyzing social media data during the post-disaster recovery phase of Hurricane Sandy. Its outputs include identification of the people who experienced the disaster, estimates of their physical location, assessments of the topics they discussed post-disaster, analysis of the tract-level relationships between the topics people discussed and tract-level internal attributes, and a comparison of these outputs to those of people who did not experience the disaster. Faith-based, community, assets, and financial topics emerged as major topics of discussion within the context of the disaster experience. The differences between predictors of these topics compared to those of people who did not experience the disaster were investigated in depth, revealing considerable differences among vulnerable populations. The use of this methodology as a new Machine Learning Algorithm to analyze large volumes of social media data is advocated in the conclusion.
Keywords: Temporal–spatial patterns; Post-disaster recovery; Social media; Twitter (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401217310277
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:44:y:2019:i:c:p:25-37
DOI: 10.1016/j.ijinfomgt.2018.09.005
Access Statistics for this article
International Journal of Information Management is currently edited by Yogesh K. Dwivedi
More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().