EconPapers    
Economics at your fingertips  
 

Modeling user preferences using neural networks and tensor factorization model

Anu Taneja and Anuja Arora

International Journal of Information Management, 2019, vol. 45, issue C, 132-148

Abstract: With the expansion of information on the web, recommendation systems have become one of the most powerful resources to ease the task of users. Traditional recommendation systems (RS) suggest items based only on feedback submitted by users in form of ratings. These RS are not competent to deal with definite user preferences due to emerging and situation dependent user-generated content on social media, these situations are known as contextual dimensions. Though the relationship between contextual dimensions and user’s preferences has been demonstrated in various studies, only a few studies have explored about prioritization of varying contextual dimensions. The usage of all contextual dimensions unnecessary raises the computational complexity and negatively influences the recommendation results. Thus, the initial impetus has been made to construct a neural network in order to determine the pertinent contextual dimensions. The experiments are conducted on real-world movies data-LDOS CoMoDa dataset. The results of neural networks demonstrate that contextual dimensions have a significant effect on users’ preferences which in turn exerts an intense impact on the satisfaction level of users. Finally, tensor factorization model is employed to evaluate and validate accuracy by including neural network’s identified pertinent dimensions which are modeled as tensors. The result shows improvement in recommendation accuracy by a wider margin due to the inclusion of the pertinent dimensions in comparison to irrelevant dimensions. The theoretical and managerial implications are discussed.

Keywords: Context-aware recommendations; Contextual modeling; Consumer satisfaction level; Dimensionality reduction; Neural networks; Tensor factorization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401218305127
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:45:y:2019:i:c:p:132-148

DOI: 10.1016/j.ijinfomgt.2018.10.010

Access Statistics for this article

International Journal of Information Management is currently edited by Yogesh K. Dwivedi

More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ininma:v:45:y:2019:i:c:p:132-148