EconPapers    
Economics at your fingertips  
 

Multimodal data as a means to understand the learning experience

Michail N. Giannakos, Kshitij Sharma, Ilias O. Pappas, Vassilis Kostakos and Eduardo Velloso

International Journal of Information Management, 2019, vol. 48, issue C, 108-119

Abstract: Most work in the design of learning technology uses click-streams as their primary data source for modelling & predicting learning behaviour. In this paper we set out to quantify what, if any, advantages do physiological sensing techniques provide for the design of learning technologies. We conducted a lab study with 251 game sessions and 17 users focusing on skill development (i.e., user's ability to master complex tasks). We collected click-stream data, as well as eye-tracking, electroencephalography (EEG), video, and wristband data during the experiment. Our analysis shows that traditional click-stream models achieve 39% error rate in predicting learning performance (and 18% when we perform feature selection), while for fused multimodal the error drops up to 6%. Our work highlights the limitations of standalone click-stream models, and quantifies the expected benefits of using a variety of multimodal data coming from physiological sensing. Our findings help shape the future of learning technology research by pointing out the substantial benefits of physiological sensing.

Keywords: Human learning; Multimodal learning analytics; User-generated data; Skill acquisition; Multimodal data; Machine learning (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401218312751
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:48:y:2019:i:c:p:108-119

DOI: 10.1016/j.ijinfomgt.2019.02.003

Access Statistics for this article

International Journal of Information Management is currently edited by Yogesh K. Dwivedi

More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ininma:v:48:y:2019:i:c:p:108-119