EconPapers    
Economics at your fingertips  
 

The role of positive and negative valence factors on the impact of bigness of data on big data analytics usage

Maryam Ghasemaghaei

International Journal of Information Management, 2020, vol. 50, issue C, 395-404

Abstract: The number of firms that intend to invest in big data analytics has declined and many firms that invested in the use of these tools could not successfully deploy their project to production. In this study, we leverage the valence theory perspective to investigate the role of positive and negative valence factors on the impact of bigness of data on big data analytics usage within firms. The research model is validated empirically from 140 IT managers and data analysts using survey data. The results confirm the impact of bigness of data on both negative valence (i.e., data security concern and task complexity), and positive valence (i.e., data accessibility and data diagnosticity) factors. In addition, findings show that data security concern is not a critical factor in using big data analytics. The results also show that, interestingly, at different levels of data security concern, task complexity, data accessibility, and data diagnosticity, the impact of bigness of data on big data analytics use will be varied. For practitioners, the findings provide important guidelines to increase the extent of using big data analytics by considering both positive and negative valence factors.

Keywords: Big data analytics use; Bigness of data; Data security concern; Task complexity; Data accessibility; Data diagnosticity (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401218302767
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:50:y:2020:i:c:p:395-404

DOI: 10.1016/j.ijinfomgt.2018.12.011

Access Statistics for this article

International Journal of Information Management is currently edited by Yogesh K. Dwivedi

More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ininma:v:50:y:2020:i:c:p:395-404